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1. Introduction

Little string theory is a nonlocal theory that has many features of string theory such as

T-duality, though it is a non-gravitational theory [1 – 3]. It is the theory which lives on the

worldvolume of type IIA NS5 brane in its decoupling limit. From holographic point of view

little string theory on R1,5 is dual to type IIA string theory on linear dilaton background [4].

Linear dilaton background is the one obtained by near horizon limit of NS5 brane. More

precisely the supergravity solution for N NS5 branes is given by

ds2 = −dt2 + d~x2 + f(dr2 + r2dΩ2
3),

e2φ = gs
2f , dB = 2Nα′ε3 , f = 1 +

Nα′

r2
, (1.1)

where d~x parameterizes a 5-dimensional flat space and ε3 is the volume of dΩ3. In the

decoupling limit where gs → 0 and ls,u = r
gs

are set to be finite, the N NS5 branes

supergravity solution reads

ds2 = −dt2 + d~x2 +
Nα′

u2
(du2 + u2dΩ2

3),

e2φ =
Nα′

u2
, dB = 2Nα′ε3. (1.2)

This solution is called linear dilaton background which is conjectured to be dual to little

string theory on R1,5. Therefore by making use of AdS/CFT correspondence [5 – 7] (for

a general review see [8]), one may use the gravity dual side to understand some features

of little string theory side. Such studies have been done for the case where we have little

string theory on R1,5 [9 – 13]. The noncommutative deformation of this background and

their corresponding Penrose limits have also been studied in [14 – 27].
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Recently in the context of 1/2 BPS solutions [28] Lin and Maldacena have obtained

the supergravity solution of type IIA N NS5 branes wrapped on S5, that is [29]

ds2
10 = Nα′

[

− 2r

√

I0

I2
dt2 + 2r

√

I2

I0
dΩ2

5 +

√

I2

I0

I0

I1
(dr2 + dθ2) +

√

I2

I0

I0I1s
2

I0I2s2 + I2
1c2

dΩ2
2

]

B2 = Nα′
[ −I2

1cs

I0I2s2 + I2
1c2

+ θ

]

d2Ω

eΦ = g0N
3/22−1

(

I2

I0

)
3

4

(

I0

I1

)
1

2

(

I0I2s
2 + I2

1c2

)− 1

2

C1 = −α′1/2
g−1
0

1

N
4r

I1

I2
(I2

0s2 + I2
1c2)dt

C3 = −α′3/2
g−1
0

4I0I
2
1s3

I0I2s2 + I2
1c2

dt ∧ d2Ω (1.3)

where In(r) are a series of modified Bessel functions of the first kind. Also s and c mean

sin(θ) and cos(θ) respectively. This solution preserves 16 supercharges and has R×SO(3)×
SO(6) bosonic symmetry group. In our notation we have

dΩ2
5 = dθ2

1 + cos2 θ1dθ2
2 + sin2 θ1dΩ2

3,

dΩ2
2 = dφ2

1 + cos2 φ2
1dφ2

2. (1.4)

In spirit of AdS/CFT one may suspect that type IIA string theory on this new background

is dual to little string theory on R1 × S5. If this is the case one should first check whether

there is a notion of decoupling limit. This can be done by making use of scattering of

graviton from NS5 brane. Following [30] one can see that the scattering of transverse

graviton will essentially lead to compute the scattering of a scalar field φ(r) the brane.

This scalar field will satisfy the Laplace equation as follows

∂r(
√

GGrr∂rφ) + ∂t(
√

GGtt∂tφ) = 0, (1.5)

where G is the determinant of the metric. Setting φ = α(r)ψ(r)eiωt the above Laplace

equation can be recast to the following Schrodinger like equation

∂r
2ψ − V (r) = 0, (1.6)

where the potential is given by

V (r) =
1

2

A′′

A
− 1

4

(

A′

A

)2

− I2

2rI1
ω2, (1.7)

with

A = r3I2
1 , A′ = ∂rA , A′′ = ∂2

r A ,
α′(r)

α(r)
=

−A′

2A
. (1.8)

The shape of the potential, having an infinite barrier, shows that the supergravity solu-

tion (1.3) is in the decoupling limit of NS5 branes, the limit for which the modes in the

throat will decouple from the modes of the rest of the space. Therefore it is reasonable

to say that there is a little string theory which lives on R1 × S5 that is dual to type IIA
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string theory on N NS5 branes wrapped on S5 background, given by (1.3). So we can use

the gravity side to obtain some information about little string theory side. For example

one could study the Penrose limit of this solution and also following [31] we could consider

semiclassical rotating and spinning closed string solutions on this background. This could

give us an insight of what the little string theory on R1 × S5 might be.

The paper is organized as follows. In section 2, following the study of localized rotating

closed string in S2, we will study the Penrose limit of this background and we will see that

string theory on it, is exactly solvable. In section 3, we will study semiclassical closed

strings rotating and spinning in subsequently S2 and S5. And the last section is devoted

to conclusion.

2. Plane wave limit

As we said the background we are considering, (1.3), has R × SO(3) × SO(6) bosonic

symmetry. It means that the isometries of the metric are time, related to a conserved

energy, three angle coordinates in S5 which would lead to three spin conserved charges,

and one angle coordinate in S2 which would give a conserved angular momentum or R-

symmetry charge. In the following two sections, according to these isometries, we will

consider semiclassical closed strings that carry the corresponding conserved charges to

probe this background and understand it better.

As the first case we will study a configuration in which the semiclassical closed strings

are centered around the origin of S5 sphere and stretched along radial coordinate, r. Also

these folded closed strings rotate in one direction in S2. In our notation the corresponding

closed string configuration is given by

t = κτ , r = r(σ) , ϕ2 = ντ , θ =
π

2
, (2.1)

and all the other coordinates are set to zero. Using this ansatz, the bosonic part of the

superstring action is

S =
−N

4π

∫

dσdτ

(

2r

√

I0

I2
κ2 +

√

I2

I0

I0

I1
r′2 −

√

I2

I0

I1

I2
ν2

)

, (2.2)

where r′ = ∂σr. The solution or ansatz considered here should also satisfy the Virasoro

condition that is

r′2 +

(

I2
1

I0I2
ν2 − 2r

I1

I2
κ2

)

= 0. (2.3)

The corresponding conserved charges are

E =
Nκ

π

∫

dσr

√

I0

I2
, J =

Nν

2π

∫

dσ

√

I2

I0

I1

I2
. (2.4)

Now the aim is to find the dependence of energy, E, on angular momentum, J . This can

be done by making use of the Virasoro constraint. In general the Virasoro constraint can

be thought of ”zero energy” condition for a non-relativistic particle with a potential. We

are looking for periodic solutions that satisfy this equation. But noting the fact that the
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first term, kinetic term, is positive definite, the potential, V (r), should be negative or zero

and simultaneously its derivative should be positive or zero.

In this ansatz the potential has no minimum or in other words the potential is always

negative and has negative slope. Therefore we won’t get any closed string solution except

for r = 0 that is a zero size closed string solution. This will just happen when we have

ν = 2κ. Therefore in leading order, the relation between energy and angular momentum

is given by

E = 2J. (2.5)

What we have obtained are the states in which E − 2J is finite. Now if we consider fluctu-

ations around this classical solution, it would lead to the Penrose limit of the background.

The idea is to consider the trajectory of a particle that is moving very fast along one

direction in S2 and to focus on the geometry that this particle sees. These fluctuations are

t = κτ +
t̃

21/4
√

N
, ϕ2 = 2κτ +

ϕ̃2

21/4
√

N
, r =

21/4r̃√
N

,

θ =
π

2
+

21/4y√
N

, ϕ1 =
z

21/4
√

N
, Ω = Ω̃ . (2.6)

We have also imposed the rescaling of coordinates in these relations to get the leading finite

terms in the sigma model action when N is large.

The bosonic part of the string sigma model action, in general background, is

S =
1

4πα′

∫

d2σ
√

g

[(

gabGµν(X) + εabBµν(X)

)

∂aX
µ∂bX

ν +
1

2
α′ΦR(2)

]

, (2.7)

where R(2) is worldsheet curvature and since in our case the metric is ηab, R(2) is zero.

Using the fluctuations (2.6) the first term of the string action for the metric (1.3) reads

S1 =
−1

4π

∫

dσdτ

[

∂ay∂ay + ∂az∂az + ∂aXi∂
aXi + κ2(XiX

i + 16y2 + 4z2)

−4∂at̃∂
at̃ + ∂aϕ̃2∂

aϕ̃2

]

, (2.8)

where the angular coordinates in S5 and radial coordinate, r, are shown by Xi where

i = 1, . . . , 6 (6-dimensional flat space). On the other hand using the definition of B field

in (1.3) the second term of the action would be

S2 =
−1

2π

∫

dσdτ 3κy∂σz. (2.9)

Let us define the lightcone coordinates as

x+ = t +
ϕ2

2
, x− = t − ϕ2

2
, (2.10)

therefore

x+ = 2κτ +
1

21/4
√

N

(

t̃ +
1

2
ϕ̃2

)

, x− =
1

21/4
√

N

(

t̃ − 1

2
ϕ̃2

)

. (2.11)
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If we perform the following rescaling for x−

x− =
x̃−

√
2N

. (2.12)

and use the fact that κ = 1
2∂τx

+, lightcone gauge, the sigma model action is written as

S =
−1

4π

∫

dσdτ

[

∂aXi∂
aXi +

1

4
∂τx

+∂τx+(XiX
i + 16y2 + 4z2)

+∂ay∂ay + ∂az∂az − 4∂ax
+∂ax̃− + 3y∂τx

+∂σz

]

. (2.13)

This action is the one for eight massive bosons, related to eight transverse coordinates.

Therefore by using it we can see that the fluctuations around closed zero size strings will

see a plane wave background given by the following metric

ds2 = α′
[

dy2 + dz2 + dX2
6 − 1

4
(X2

6 + 16y2 + 4z2)dx+2 − 4dx+dx̃−
]

, (2.14)

and B field

B+z = 3α′y. (2.15)

Under this change of coordinates dilaton field will remain finite if we rescale g0 by N− 3

2 .

Also the RR field strengths corresponding to C1 and C3 vanish when N → ∞.

By making use of the action we can write the equations of motion for the strings

moving on this plane wave background as

∂a∂
ay − 3κ∂σz − 16κ2y = 0 , ∂a∂

az + 3κ∂σy − 4κ2z = 0

∂a∂
aXi − κ2Xi = 0 , i = 1, . . . , 6. (2.16)

These equations of motion are similar to what we have for harmonic oscillator, six inde-

pendent and two coupled ones. Therefore string theory is exactly solvable on the plane

wave background (2.14). The results for normal oscillating modes are

ωn = κ

√

1 +
n2

κ2
, ω± = κ

√

10 +
n2

κ2
± 3

√

4 +
n2

κ2
. (2.17)

Now we are able to obtain energy, E, and angular momentum, J , relations for the strings

moving in this plane wave background. For the classical closed string case we had E = 2J .

But when we consider quantum fluctuations it would be

E − 2J =
1

2π

∫

dσ

(

κ(XiX
i + 16y2 + 4z2) + 4

√
N2

1

4 ∂τ x̃− + 3y∂σz

)

. (2.18)

On the other hand we can write the Virasoro condition when we consider these fluctuations,

that is

(∂τXi∂τX
i + ∂σXi∂σXi) + (∂τy∂τy + ∂σy∂σy) + (∂τz∂τz + ∂σz∂σz)

−κ2(XiX
i + 16y2 + 4z2) − 4(∂τ t̃∂τ t̃ + ∂σ t̃∂σ t̃) + (∂τ ϕ̃2∂τ ϕ̃2 + ∂σϕ̃2∂σϕ̃2)

– 5 –
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−8κ2
1

4

√
N∂τ x̃

− = 0 (2.19)

Using this Virasoro condition we can replace the term, 8κ2
1

4

√
N∂τ x̃

−, in (2.18). The result

is

E − 2J = HLightCone, (2.20)

where HL.C. is the hamiltonian of the system in light cone gauge and is given by

E − 2J =
1

4πκ

∫

dσ

(

(∂τXi∂τX
i + ∂σXi∂σXi) + (∂τy∂τy + ∂σy∂σy)

+ (∂τz∂τz + ∂σz∂σz) + κ2(XiX
i + 16y2 + 4z2) − 4(∂τ t̃∂τ t̃ + ∂σ t̃∂σ t̃)

+ (∂τ ϕ̃2∂τ ϕ̃2 + ∂σϕ̃2∂σϕ̃2) + 6κy∂σz

)

. (2.21)

Therefore by making use of (2.17) we have

E − 2J =
∑

n

N (6)
n

√

1 +
8N2n2

J2
+ N+

n

√

10 +
8N2n2

J2
+ 3

√

4 +
8N2n2

J2

+N−
n

√

10 +
8N2n2

J2
− 3

√

4 +
8N2n2

J2
, (2.22)

where N±
n is the occupation number along z and y and also N i

n are occupation numbers

along six dimensional flat space, characterized by Xi. In the classical case we saw that the

closed string satisfied the relation, E − 2J = 0. But now we can see this relation will get

some corrections which is controlled by N2

J2 .

Using AdS/CFT correspondence, there should be some operators in little string theory

on R1 × S5, for which both E and J are large but E − 2J is finite. These states are not

BPS, because E−2J gets quantum corrections, though these corrections are under control

and in fact the expansion parameter is given by N2

J2 . Note also that N2

J2 remains finite in

the N → ∞ limit. To summarize one may conjecture that type IIA string theory on plane

wave background (2.14), is dual to operators in little string theory on R1 × S5 whose E

and J are large but E − 2J is finite and is given by (2.22).

3. Rotating and spinning closed strings

In this section we will consider semiclassical closed strings stretched along radius and rotate

in S5 and S2, each in one direction. The ansatz that describes this would be

t = κτ , r = r(σ) , ϕ2 = ντ , θ2 = ωτ , θ =
π

2
, (3.1)

and other coordinates are set to zero. For this case the action is written as

S =
−N

4π

∫

dσ dτ

(

2r

√

I0

I2
κ2 +

√

I2

I0

I0

I1
r′2 − 2r

√

I2

I0
ω2 −

√

I2

I0

I1

I2
ν2

)

. (3.2)

This ansatz will also satisfy the Virasoro condition that is

r′2 − r2

4

I0 − I2

I0I2
(4κ2 − ν2)

[

I0 − I2
4ω2 − ν2

4κ2 − ν2

]

= 0. (3.3)
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The isometries of the action will result in the following conserved charges

E =
Nκ

π

∫

dσr

√

I0

I2
, S =

Nω

π

∫

dσr

√

I2

I0
, J =

Nν

2π

∫

dσ

√

I2

I0

I1

I2
. (3.4)

The aim of probing the background using strings is to obtain the dependence of E on S and

J , for generic κ, ω and ν. In the first step, using the relations written in above equation

we will have

E =
4κ

ν
J +

κ

ω
S. (3.5)

To see whether this choice has a solution or not, we can use Virasoro constraint. As what

was done before, by looking at the potential we see that the periodicity condition will be

satisfied if we consider 2κ > ν and 2ω > ν. The turning point is r0 and is given by

I0(r0)

I2(r0)
=

4ω2 − ν2

4κ2 − ν2
. (3.6)

It is very difficult to obtain solutions precisely. So we will study its long and short string

limits. If we define

1 + η =
4ω2 − ν2

4κ2 − ν2
, (3.7)

therefore η → 0 and η → ∞ correspond to long, r → ∞, and short, r → 0, limits,

respectively. Now we are ready to study short and long closed strings rotating in this

supergravity background.

3.1 Short strings

In the short string limit, r0 → 0, we can check that whether there is a periodic solution.

To see this we expand (3.3) for small r → 0 we get

r′
2 ≈ 2(4κ2 − ν2) − 1

4
(4κ2 − ν2)

(

2

3
+ η

)

r2, (3.8)

and this equation will be satisfied by a periodic solution for r that is r = r0 sin σ, if we

have

r0 =
√

2(4κ2 − ν2) ,
1

4
(4κ2 − ν2)

(

2

3
+ η

)

= 1. (3.9)

Therefore using the definition of η and the fact that in short string case η → ∞ we obtain

4κ2 − ν2 ∼ 4

η
, 4ω2 − ν2 ∼ 4

η
+ η. (3.10)

Now using the relation obtained for angular momentum J and expanding it for r → 0, the

dependence of J on ν will be

J ∼
√

2Nν. (3.11)

Also if we do the same for S we get

S ∼ 2
√

2Nω

η
. (3.12)

– 7 –
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Plugging this equation into (3.10) we get an expression for ω at leading order, which can

be used to obtain 1
η as follows

1

η
∼ S

√
2N

√

4 + J2

2N2

. (3.13)

We can substitute the above equation in (3.10) and find the final results for κ and ω as

4κ2 ∼ J2

2N2
+

4S√
2N

1
√

4 + J2

2N2

, (3.14)

4ω2 ∼ 4 +
J2

2N2
+

2
√

2S

N

1
√

4 + J2

2N2

. (3.15)

We need to find the dependence of E on S and J . Using (3.5) and the relations for ω, ν

and κ the final result will be

E ≈
√

√

√

√

2J2

N2
+

16
√

2S

N
√

16 + 2J2

N2

(

√
2N +

S
√

16 + 2J2

N2 + 16
√

2S

N
q

16+ 2J2

N2

)

. (3.16)

For the case where both S and J are small we get

E2 ≈ 8
√

2NS + 4(J2 + S2), (3.17)

which actually represent Regge trajectories in the flat space. The other limit is S À J for

which energy is given by

E ≈ S −
√

2

16N
J2 −

√
2N +

√
S

(

2
7

4

√
N − 1

16

(
√

2

N

)
3

2

J2

)

. (3.18)

Also when S ¿ J we can find energy as

E ≈ 2J + S +
4N2S

J2
− 8N4S

J4
. (3.19)

It is easily seen that this expression for energy is an expansion in terms of N2

J2 and is related

to the leading quantum term in the spectrum of string on plane wave background, (2.22).

3.2 Long strings

As we saw the long string limit corresponds to r0 → ∞ and η → 0. In (3.3) we expand r′2

for r → ∞, therefore we find

r′
2 ≈ (3κ2 − ν2 + ω2) + 2r(κ2 − ω2). (3.20)

– 8 –
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Considering the fact that r0 is the turning point (r′ = 0), we obtain

r0 =
2

η
+

1

2
. (3.21)

On the other hand we note that r′ = dr
dσ and also for 0 < σ < π

4 the function r(σ) increases

from zero to a maximal value r0, so

2π =

∫ 2π

0
dσ ≈ 4

√

2(ω2 − κ2)

∫ r0

0

dr
√

2
η + 1

2 − r
. (3.22)

Therefore we get

ω2 − κ2 ∼ 4

π2

(

4

η
+ 1

)

, (3.23)

and using the definition of η we find

4κ2 − ν2 ∼ 16

π2η

(

4

η
+ 1

)

. (3.24)

Now if we expand the definition of J and S for large r we get that

J ∼ Nν , S ∼ 2Nω

3

(

4

η
− 2

)

, (3.25)

where we have used (3.4). In this step we should try to obtain a relation for η dependence

on S and J . To do this we use (3.23) and (3.24) to find a relation for ω in terms of η

and ν. Now if we substitute the result in the equation for S (3.25), we get a second order

equation for η that is

S +
49N

12π
− πJ2

12N
− 4N

3πη

(

8

η
+ 1

)

≈ 0, (3.26)

which can be solved to find

1

η
≈ 1

16

(

−1 +

√

99 +
24πS

N
− 2π2J2

N2

)

. (3.27)

We substitute it in equations (3.23) and (3.24) and get the final results for κ and ω that

are

4ω2 ∼ J2

2N2
+

6S

πN
+

36

π2
+

9

2π2

(

√

99 +
24πS

N
− 2π2J2

N2

)

, (3.28)

4κ2 ∼ J2

2N2
+

6S

πN
+

24

π2
+

1

2π2

(

√

99 +
24πS

N
− 2π2J2

N2

)

. (3.29)

Now we can use the equation obtained for energy, (3.5), and obtain energy in terms of

angular momentum and spin. Energy in the limit where S is large and J is small is given

by

E ≈ 14N

3π
+ S +

4

3

√

6NS

π
+

55
√

6

36

(

N

π

)
3

2 1√
S

+

√

π

6N

J2

√
S

. (3.30)
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We can see that in contrast to similar cases in Ads5 ×S5 [31, 32], the corrections to energy

are not in terms of ln S, but in terms of
√

S. Of course this might be understood from

the fact that in the AdS5 × S5 case we are dealing with a gauge theory. It should also be

mentioned that limits in which J is large or J is greater than S in this long string limit

are not reasonable.

4. Conclusion

In this paper we have studied the 1/2 BPS geometry of N NS5 branes wrapped on S5 using

folded closed string probes. We have first considered a point like closed string configuration

which rotates in S2. The string sigma model expansion around this classical solution

resulted in pp wave limit of this background. Such a result should be compared to pp wave

limit of NS5 branes in R1,5 case. The pp wave metric we have obtained for N NS5 branes

wrapped on S5, is 10-dimensional but for the case in which NS5 brane is defined on R1,5

the result is 4-dimensional plane wave times 6-dimensional flat space [24 – 27].

In the case we have considered, little string theory on R×S5 is dual to type IIA string

theory on N NS5 branes wrapped on S5 background. Actually one may interpret the

strings in little string theory as D2 branes stretched between two NS5 branes in type IIA

string theory. In the limit where NS5 branes approach each other we will have to deal with

tensionless strings in little string theory side. Now using the duality one may deduce that

little string theory on R × S5 is composed of closed strings. Because on S5 all dimensions

are compact and therefore periodic. This is in contrast with having just open strings in

little string theory on R1,5.

We also considered short and long string limits of folded closed strings, centered around

the origin and stretched along the radial coordinate. Such a configuration rotates along one

direction in S2 and also spins along one direction in S5. Such a configuration would result

in a state in little string theory that has spin. It should be mentioned that such states do

not exist in little string theory on R1,5. Because there are not such classical closed string

configurations in its supergravity dual. In the short string case as expected we obtained

Regge trajectory as in the flat space when S and J are small. In long string limit we have

also seen that corrections to energy are in terms of
√

S.

One could also consider the most general case in which the folded closed string rotates

in one direction in S2 and spins in three directions in S5. Such a configuration that is

called multi-spin string solution, carries all the conserved charges related to the isometries

of the metric [33].

One may study the background by probing it with NS5 brane wrapped on S5 or D2

brane wrapped on S2. Such cases could be compared to giant gravitons in AdS5×S5, where

two different D3 branes could wrap over two 3-spheres of AdS5 ×S5 in global coordinates.

It would also be interesting to study the genuine dynamics of stings such as splitting in

this background. Such analysis has been done for AdS5 × S5 background, for example,

in [34, 35].

Finally we note that since the string theory on plane wave background (2.14) is ex-

actly solvable, one could also study open string which would result in different D-brane
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configurations that might exist in this background. In this paper we have only studied the

bosonic part of the string sigma model action. One may also consider the fermionic part.

Such study has been done in the case of little string theory living on R1,5 [27].
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